这个的内容较多,一时半会是说不清楚的,如果你要学习这方面的知识,你可以找一份完整的计算书来研究。 建筑门窗抗风压性能计算书 I、计算依据: 《建筑玻璃应用技术规程》 JGJ 113-2009 《钢结构设计规范》 GB 50017-2003 《建筑结构荷载规范》 GB 50009-2001 2006版 《未增塑聚氯乙烯(PVC-U)塑料门》 JG/T 180-2005 《未增塑聚氯乙烯(PVC-U)塑料窗》 JG/T 140-2005 《铝合金门窗》 GB/T 8478-2008 《铝合金结构设计规范 GB 50429-2007》 《建筑门窗术语 GB/T 5823-2008》 《建筑门窗洞口尺寸系列 GB/T 5824-2008》 《建筑外门窗保温性能分级及检测方法 GB/T 8484-2008》 《建筑外门窗空气声隔声性能分级及检测方法 GB/T 8485-2008》 《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7106-2008》 《铝合金建筑型材 第一部分:基材 GB 5237.1-2008》 《铝合金建筑型材 第二部分:阳极氧化型材 GB 5237.2-2008》 《铝合金建筑型材 第三部分:电泳涂漆型材 GB 5237.3-2008》 《铝合金建筑型材 第四部分:粉末喷涂型材 GB 5237.4-2008》 《铝合金建筑型材 第五部分:氟碳漆喷涂型材 GB 5237.5-2008》 《铝合金建筑型材 第六部分:隔热型材 GB 5237.6-2008》 II、详细计算 一、风荷载计算 1)工程所在省市:四川 2)工程所在城市:绵阳市 3)门窗安装最大高度z:100 米 (外窗最高97.5米,此处取100米) 4)门窗系列:华建铝材-GR58B隔热内平开窗 5)门窗尺寸: 门窗宽度W=1940 mm 门窗高度H=1640 mm 6)门窗样式图: 1 风荷载标准值计算:Wk = βgz*μS1*μZ*W0 (按《建筑结构荷载规范》GB 50009-2001 2006版 7.1.1-2) 1.1 基本风压 W0= 300 N/m2 (按《建筑结构荷载规范》GB 50009-2001 2006版规定,采用50年一遇的风压,但不得小于0.3 KN/m2 1.2 阵风系数βgz 计算: 1)A类地区:βgz=0.92*(1+2μf) 其中:μf=0.5*35^(1.8*(-0.04))*(z/10)^(-0.12),z为安装高度; 2)B类地区:βgz=0.89*(1+2μf) 其中:μf=0.5*35^(1.8*(0))*(z/10)^(-0.16),z为安装高度; 3)C类地区:βgz=0.85*(1+2μf) 其中:μf=0.5*35^(1.8*(0.06))*(z/10)^(-0.22),z为安装高度; 4)D类地区:βgz=0.80*(1+2μf) 其中:μf=0.5*35^(1.8*(0.14))*(z/10)^(-0.30),z为安装高度; 安装高度z<5米时,按5米时的阵风系数取值。 本工程按: C.有密集建筑群的城市市区 取值。 βgz=0.85*(1+2μf) μf=0.5*35^(1.8*(0.06))*(z/10)^(-0.22) =0.85*(1+2*(0.5*35^(1.8*(0.06))*(100/10)^(-0.22))) =1.602 (按《建筑结构荷载规范》GB 50009-2001 2006版 7.5.1规定) 1.3 风压高度变化系数μz计算: 1)A类地区:μz=1.379 * (z / 10) ^ 0.24,z为安装高度; 2)B类地区:μz=(z / 10) ^ 0.32,z为安装高度; 3)C类地区:μz=0.616 * (z / 10) ^ 0.44,z为安装高度; 4)D类地区:μz=0.318 * (z / 10) ^ 0.6,z为安装高度; 本工程按: C.有密集建筑群的城市市区 取值。 μz=0.616 * (100 / 10) ^ 0.44 =1.697 (按《建筑结构荷载规范》GB 50009-2001 2006版 7.2.1规定 ) 1.4 局部风压体型系数μs1的计算: μs1:局部风压体型系数,根据计算点体型位置取0.8; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1: ● 外表面 1. 正压区 按表7.3.1采用; 2. 负压区 - 对墙面, 取-1.0 - 对墙角边, 取-1.8 ● 内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 另注:上述的局部体型系数μs1(1)是适用于围护构件的从属面积A≤1m2的情况,当围护构件的从属面积A≥10m2时,局部风压体型系数μs1(10)可乘以折减系数0.8,当构件的从属面积A<10m2而>1m2时,局部风压体型系数μs1(A)可按面积的对数线性插值,即:μs1(A)=μs1(1)+[μs1(10)-μs1(1)]logA 受力杆件中从属面积最大的杆件为:竖向杆件中的(竖杆件) 其从属面积为A=左区域1:1.066+右区域2:2.116 =3.182 支撑结构的构件从属面积A<10 m2,且A>1 m2 LogA=Log(3.182)=0.503 μs1(3.182)=μs1(1)+[μs1(10)-μs1(1)]*logA =.8+(.8*0.8-.8)*0.503 =0.720 μs1=μs1(3.182)+0.2 =0.720+0.2 =0.920 因此:支撑结构局部风压体型系数μs1取:0.920 1.4.2 面板材料的局部风压体型系数μs1的计算: 面板材料的局部风压体型系数按面积最大的玻璃板块(即:1290x1640=2.116 m2)来计算: 面板材料的构件从属面积A<10 m2,且A>1 m2 LogA=Log(2.116)=0.325 μs1(2.116)=μs1(1)+[μs1(10)-μs1(1)]*logA = .8+(.8*0.8-.8)*0.325 =0.748 μs1=μs1(2.116)+0.2 =0.748+0.2 =0.948 因此:面板材料局部风压体型系数μs1取:0.948 1.5 风荷载标准值计算: 1.5.1 支撑结构风荷载标准值计算: Wk(N/m2)=βgz*μz*μS1*W0 =1.602*1.697*0.920*300 =750.332 1.5.2 面板材料风荷载标准值计算: Wk(N/m2)=βgz*μz*μS1*W0 =1.602*1.697*0.948*300 =773.168 2 风荷载设计值计算: 2.1 支撑结构风荷载设计值计算: W(N/m2)=1.4*Wk =1.4*750.332 =1050.465 2.2 面板结构风荷载设计值计算: W(N/m2)=1.4*Wk =1.4*773.168 =1082.435 二、门窗主要受力杆件的挠度、弯曲应力、剪切应力校核: 1 校验依据: 1.1 挠度校验依据: 1)单层玻璃,柔性镶嵌: 2)双层玻璃,柔性镶嵌: 3)单层玻璃,刚性镶嵌: 其中:fmax:为受力杆件最在变形量(mm) L:为受力杆件长度(mm) 本窗型选用:双层5㎜+12A+5㎜Low-E中空玻璃,柔性镶嵌:校核依据 fmax/L ≤ 1/150 且 famx ≤ 20 mm 1.2 弯曲应力校验依据: σmax=M/W<=[σ] [σ]:材料的抗弯曲应力(N/mm2) σmax:计算截面上的最大弯曲应力(N/mm2) M:受力杆件承受的最大弯矩(N.mm) W:净截面抵抗矩(mm3) 1.3 剪切应力校验依据: τmax=(Q*S)/(I*δ)<=[τ] [τ]:材料的抗剪允许应力(N/mm2) τmax:计算截面上的最大剪切应力(N/mm2) Q:受力杆件计算截面上所承受的最大剪切力(N) S:材料面积矩(mm3) I:材料惯性矩(mm4) δ:腹板的厚度(mm) 2 主要受力杆件的挠度、弯曲应力、剪切应力计算: 因建筑外窗在风荷载作用下,承受的是与外窗垂直的横向水平力,外窗各框料间构成的受荷单元,可视为四边铰接的简支板。在每个受荷单元的四角各作45度斜线,使其与平行于长边的中线相交。这些线把受荷单元分成4块,每块面积所承受的风荷载传递给其相邻的构件,每个构件可近似地简化为简支梁上呈矩形、梯形或三角形的均布荷载。这样的近似简化与精确解相比有足够的准确度,结果偏于安全,可以满足工程设计计算和使用的需要。由于窗的四周与墙体相连,作用在玻璃上的风荷载由窗框传递给墙体,故不作受力杆件考虑,只需对选用的中梃进行校核。 2.1 竖杆件的挠度、弯曲应力、剪切应力计算: 构件【竖杆件】的各受荷区域基本情况如下图: 构件【竖杆件】的由以下各型材(衬钢)组合而成,它们共同承担【竖杆件】上的全部荷载: (1) 铝合金 - 58平开窗中梃A
截面参数如下: 惯性矩:113718.97 抵抗矩:2992.59 面积矩:3111.08 截面面积:488.06 腹板厚度:1.45 2.1.1 【竖杆件】的刚度计算 (1) 58平开窗中梃A的弯曲刚度计算 D(N.mm2)=E*I=70000*113718.97=7960327900 58平开窗中梃A的剪切刚度计算 D(N.mm2)=G*F=26000*488.06=12689560 2.【竖杆件】的组合受力杆件的总弯曲刚度计算 D(N.mm2)=7960327900=7960327900 【竖杆件】的组合受力杆件的总剪切刚度计算 D(N.mm2)=12689560=12689560 2.1.2 【竖杆件】的受荷面积计算 1.左区域1的受荷面积计算(梯形) A(mm2)=(650/2*650/2)+(1640-650)*650/2=427375 2.右区域2的受荷面积计算(梯形) A(mm2)=(1290/2*1290/2)+(1640-1290)*1290/2=641775 3.【竖杆件】的总受荷面积 A(mm2)=427375+641775=1069150 2.1.3 【竖杆件】所受均布荷载计算 Q(N)=Wk*A =750.332*1069150/1000000 =802.218 2.1.4 【竖杆件】在均布荷载作用下的中点挠度、弯矩、剪力计算 2.1.4.1 在均布荷载作用下的中点挠度计算 1.58平开窗中梃A在均布荷载作用下的中点挠度计算 按弯曲刚度比例分配荷载 分配荷载:Q58平开窗中梃A=Q总*(D58平开窗中梃A/D总) =802.218*(7960327900/7960327900) =802.218 本受力杆件在风荷载作用下,可简化为承受梯形均布荷载 Fmid(mm)=Q*L3/(60.72073*D) =802.218*1640^3/(60.72073*7960327900) =7.321 2.1.4.2 在均布荷载作用下的弯矩计算 1.58平开窗中梃A在均布荷载作用下的弯矩计算 按弯曲刚度比例分配荷载 分配荷载:Q58平开窗中梃A=Q总*(D58平开窗中梃A/D总) =802.218*(7960327900/7960327900) =802.218 所受荷载的设计值计算:Q=1.4*Q =1.4* 802.218 =1123.105 本受力杆件在风荷载作用下,可简化为承受梯形均布荷载 Mmax(N.mm)=Q*L/6.117439 =1123.105*1640/6.117439 =301088.800 2.1.4.3 在均布荷载作用下的剪力计算 1.60平开窗中梃A在均布荷载作用下的剪力计算 按剪切刚度比例分配荷载 分配荷载:Q58平开窗中梃A=Q总*(D58平开窗中梃A/D总) =802.218*(12689560/12689560) =802.218 所受荷载的设计值计算:Q=1.4*Q =1.4* 802.218 =1123.105 本受力杆件在风荷载作用下,可简化为承受梯形均布荷载 Qmax(N)=±Q*(1-a/L)/2 =1123.105*(1-.393292682926829)/2 =340.698 2.1.5 【竖杆件】 在集中荷载作用下的中点挠度、弯矩、剪力计算 2.1.6 竖杆件在均布荷载和集中荷载共同作用下的中点总挠度校核 2.1.6.1 58平开窗中梃A中点总挠度校核 2.1.6.1.1 58平开窗中梃A中点总变形计算 F总=F均布+ΣF集中 =7.321 =7.321 2.1.6.1.2 60平开窗中梃A中滑挠跨比计算 挠跨比=F总/L =7.321/1640 =0.004 该门窗选用:双层玻璃,柔性镶嵌:校核依据 fmax/L ≤ 1/150 且 famx ≤ 20 mm 0.004 ≤ 1/150 且 7.321 ≤ 20 mm ,因此: 58平开窗中梃A 的挠度符合要求。 2.1.8 竖杆件在均布荷载和集中荷载共同作用下的抗剪切强度校核 2.1.8.1 58平开窗中梃A抗剪切强度校核 2.1.8.1.1 58平开窗中梃A总剪力计算 Q总=Q均布+ΣQ集中 =340.698 =340.698 2.1.8.1.2 58平开窗中梃A剪切应力计算 τmax=(Q*S)/(I*δ) τmax:计算截面上的最大剪切应力 Q:受力杆件计算截面上所承受的最大剪切力 S:材料面积矩 I:材料惯性矩 δ:腹板的厚度矩 τmax=(Q*S)/(I*δ) =(340.698*3111.08)/(113718.97*1.45) =6.428 6.428 ≤ 此类型材允许的抗剪切应力 49.6 , 因此 抗剪切能力满足要求。 2.1.10 竖杆件综合抗风压能力计算 竖杆件在均布荷载和集中荷载作用下总受荷面积计算: A= 427375+641775 = 1069150 mm2 本受力杆件在风荷载作用下,可简化为承受梯形均布荷载 L/150=Q*A*L3/(60.72073*D) Q=60.72073*D/(L2*150*A) =60.72073*7960327900/(1640^2*150*1069150)*1000 =1.12 (kPa) 3.整窗抗风压等级计算 通过以上构件的综合抗风压能力计算(如果P3<1 kpa ,取P3=1 kpa),做出如下取值: P3=1.12 (kpa) ,结合下表,进行整窗的抗风压等级计算: 建筑外窗抗风压性能分级表 分级代号 1 2 3 4 5 6 7 8 9 分级指标值P3 1≤P3<1.5 1.5≤P3<2 2≤P3<2.5 2.5≤P3<3 3≤P3<3.5 3.5≤P3<4 4≤P3<4.5 4.5≤P3<5 P3≥5.0 说明:第9级应在分级后同时注明具体检测压力差值。 通过查询《建筑外窗抗风压性能分级表》,可知该门窗的抗风压性能达到 1 级 全部受力杆的挠度、抗弯能力、抗剪能力校核结果一览表 杆件 长度 挠度 允许值 校核结果 剪切应力 许用值 校核结果 60平开窗中梃A 1640 0.004 0.007 是 6.428 49.6 是 三、玻璃计算
3.1 本门窗中面积最大的玻璃是: 右区域2 区域的玻璃 宽度:1290 mm 高度:1640 mm 面积:2.116 m2 厚度:5 mm 3.2 最大许用面积计算 据《建筑玻璃应用技术规程》JGJ 113-2009 4.2.2 ①当玻璃厚度t ≤6mm时, ②当玻璃厚度t >6mm时, 式中 ωk —风荷载标准值,kPa Amax —玻璃的最大许用面积,m2 t —玻璃的厚度,mm; 钢化、半钢化、夹丝、压花玻璃按单片玻璃厚度进行计算; 夹层玻璃按总厚度进行计算; 中空玻璃按两单片玻璃中薄片厚度进行计算; α —抗风压调整系数,由玻璃类型决定取值; 若夹层玻璃工作温度超过70°C,调整系数应为0.6; 钢化玻璃的抗风压调整系数应经实验确定,建议取2.0; 组合玻璃的抗风压调整系数应采用不同类型玻璃抗风压调整系数的乘积。 抗风压调整系数(α) 玻璃种类 普通退火玻璃 半钢化玻璃 钢化玻璃 夹层玻璃 中空玻璃 夹丝玻璃 压花玻璃 单片防火玻璃 调整系数α 1.00 1.6 2.0~3.0 0.8 1.5 0.5 0.6 3.0~4.5 本门窗选用的玻璃是:钢化玻璃 ≥20mm 59 N/mm^2 中空玻璃 ,调整系数 α=1.5 因为厚度 5 ≤ 6mm,故采用 Amax=0.2*1.5*5^1.8/0.773 =7.032 玻璃最大面积:2.116 ≤ 玻璃最大许用面积:7.032,故面积满足要求. 3.2 玻璃板块自重: GAk: 玻璃板块平均自重(不包括铝框) 玻璃的体积密度:25.6 kN/m3 t: 玻璃板块厚度: 5 mm GAk=25.6*t/1000 =25.6*5/1000 =0.128 kN/m2 3.3 玻璃强度校核 玻璃在垂直于玻璃平面的风荷载作用下的最大应力计算公式: 式中 σw—风荷载作用下玻璃最大应力(N/mm^2) ω—风荷载设计值(N/mm^2),取ω=ωk a —玻璃短边边长(mm), t —玻璃厚度(mm), 中空玻璃的厚度取单片外侧玻璃厚度的1.2倍; 夹层玻璃的厚度一般取单片玻璃厚度的1.26倍; ψ —弯曲系数,可按边长比a/b由下表用插入法查得(b为长边边长); ψ弯曲系数表 a/b 0.00 0.25 0.33 0.40 0.50 0.55 0.60 0.65 ψ 0.1250 0.1230 0.1180 0.1115 0.1000 0.0934 0.0868 0.0804 a/b 0.70 0.75 0.80 0.85 0.90 0.95 1.00 ψ 0.0742 0.0683 0.0628 0.0576 0.0528 0.0483 0.0442 最大面积玻璃短边 a=1290 mm,最大面积玻璃长边 b=1640 mm 短长边比a/b=0.79,查表得到弯曲系数ψ=0.0643 最大应力计算:σw=(6*ψ*ω*a^2)/(t^2*1000) =(6*0.0643*0.773*1290^2)/(5^2*1000) =19.8509 经校核,玻璃的最大应力19.8509 ≤ 玻璃的强度设计值59.00,故满足强度要求。 最大面积玻璃的弯曲应力、最大面积校核结果一览表 名称 宽度 高度 面积 许用面积 校核结果 最大应力 许用值 校核结果 右区域2 1290 1640 2.116 7.032 是 19.8509 59.00 是 四、连接计算
门窗连接件主要承受来自于风荷载的剪力 按照《材料力学》要求需要对每个连接件进行抗剪和承压计算 4.1 风荷载设计值计算: 风荷载标准值Wk(N/m2):750.332 W=1.4*Wk =1.4*750.332 =1050.465 4.2 每个连接件需要承受的最小荷载计算: P0:每个连接件承受荷载的安全值(N) W:风荷载设计值(N/m2):1050.465 B:门窗宽度(mm):1940 H:门窗高度(mm):1640 n:连接件总数(个):28 P0=W*B*H/n =1050.465*1.94*1.64/28 =119.363 4.3 每个连接件的抗剪能力计算: 连接件类型:A、B级螺栓(5.6级) [σv]连接件抗剪设计值(N/mm2):190 Jm每个连接件的承剪面(个):1 d连接件直径(mm):5 π圆周率:3.1415926 Nv(N)=Jm*π*d^2*[σv]/4 =1*3.1415926*5^2*190/4 =3730.641 按照《钢结构设计规范 GB 50017-2003》 7.2.1-1至7.2.1-2 4.4 每个连接件的承压能力计算: [σc]连接件承压设计值(N/mm2):405 d连接件直径(mm):5 Σt腹板厚度(mm):1.5 Nc(N)=d*Σt*[σc] =5*1.5*405 =3037.500 按照《钢结构设计规范 GB 50017-2003》 7.2.1-3至7.2.1-4 4.5 每个连接件的抗剪、承压能力校核: 抗剪能力:Nv=3730.641(N)≥P0=119.363(N),满足要求 承压能力:Nc=3037.500(N)≥P0=119.363(N),满足要求
|